Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge.
نویسندگان
چکیده
Influenza prophylaxis would benefit from a simple method to administer influenza vaccine into skin without the need for hypodermic needles. In this study, solid metal microneedle arrays (MNs) were investigated as a system for cutaneous vaccine delivery using influenza virus antigen. The MNs with 5 monument-shaped microneedles per array were produced and coated with inactivated influenza virus A/PR/8/34 (IIV). As much as 10 microg of viral proteins could be coated onto an array of 5 microneedles, and the coated IIV was delivered into skin at high efficiency within minutes. The coated MNs were used to immunize mice in comparison with conventional intramuscular injection at the same dose. Analysis of immune responses showed that a single immunization with IIV-coated MNs induced strong antibody responses against influenza virus, with significant levels of hemagglutination inhibition activities (>1:40), which were comparable to those induced by conventional intramuscular immunization. Moreover, mice immunized by a single dose of IIV coated on MNs were effectively protected against lethal challenge by a high dose of mouse-adapted influenza virus A/PR/8/34. These results show that MNs are highly effective as a simple method of vaccine delivery to elicit protective immune responses against virus infection.
منابع مشابه
Transdermal Influenza Immunization with Vaccine-Coated Microneedle Arrays
BACKGROUND Influenza is a contagious disease caused by a pathogenic virus, with outbreaks all over the world and thousands of hospitalizations and deaths every year. Due to virus antigenic drift and short-lived immune responses, annual vaccination is required. However, vaccine coverage is incomplete, and improvement in immunization is needed. The objective of this study is to investigate a nove...
متن کاملStabilization of Influenza Vaccine Enhances Protection by Microneedle Delivery in the Mouse Skin
BACKGROUND Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy. METHODOLOGY/PRINCIPAL FINDINGS Solid microneedle arrays coated with inact...
متن کاملLocal Response to Microneedle-Based Influenza Immunization in the Skin
UNLABELLED Microneedle patches (MN) provide a novel method of vaccine delivery to the skin with the objective of targeting the large network of resident antigen-presenting cells to induce an efficient immune response. Our previous reports demonstrated that cutaneous delivery of inactivated influenza virus-coated MN to mice protects against lethal infection. Protection is correlated with sustain...
متن کاملLong-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch.
Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the ski...
متن کاملSmallpox DNA vaccine delivered by novel skin electroporation device protects mice against intranasal poxvirus challenge.
Previously, we demonstrated that an experimental smallpox DNA vaccine comprised of four vaccinia virus genes (4pox) administered by gene gun elicited protective immunity in mice challenged with vaccinia virus, and in nonhuman primates challenged with monkeypox virus (Hooper JW, et al. Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol 2004;78:4433-43). Here, we re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 19 شماره
صفحات -
تاریخ انتشار 2009